skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ross, Michael S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Coastal ecosystems rapidly transform as sea levels rise faster than ecosystems can build elevation through biological processes that accrete organic matter and inorganic sediment. Benthic microbial communities (periphyton) are a crucial driver of sediment accretion in coastal wetlands by forming, trapping, and stabilizing sediments. Inorganic sediments can be either generated in situ by mineral-accreting organisms (e.g., calcium carbonates by periphyton), or materials can be transported from a different origin when sediments become resuspended and displaced, such as during high-wind weather events. In situ-generated sedimentary materials may contribute significantly to elevation gains. This study examines the drivers of coastal periphyton mineral production and whether periphytic diatoms may be used to characterize gradients in these drivers. Periphyton mineral production rates and diatom assemblage composition were measured along three coastal gradients of surface water salinity, conductivity, pH, and periphyton nutrient content in the Biscayne Bay Coastal Wetlands of South Florida. Periphyton mineral production rates ranged from 0.20-0.53 g/m2/d and were greatest at sites with the highest periphyton total carbon and mineral content while lowest at sites with the highest periphyton organic content and total nitrogen and soil depth. Diatom assemblages that sorted consistently along the coastal salinity gradient were reliable indicators of periphyton mineral production, with seven taxa indicating high rates and seven indicating low rates. Diatoms can provide a helpful link between biotic and abiotic processes, indicating where periphyton-driven mineral production contributes most to inorganic carbon cycling and mineral-driven elevation recovery and, hence, to resiliency to sea level rise. 
    more » « less
    Free, publicly-accessible full text available February 20, 2026
  2. Abstract Pulses of resource availability along environmental gradients can filter the local and regional distribution of macrophyte and microbial mat communities in wetlands. Wetlands that experience short hydroperiods (i.e., <6 months with standing water) may cause macrophyte and microbial mat competition for water. However, the stress gradient hypothesis predicts that abiotic stress should increase facilitative co‐regulation of producer dynamics. To determine if and how macrophyte and microbial mat biomass covary along a hydrologic gradient, we conducted two observational surveys and a biomass removal experiment in Everglades National Park, FL, USA. In the survey, macrophyte and microbial mat biomass were measured over a two‐year period across nine hydrologically regulated macrophyte community types to determine drivers of biomass and macrophyte–microbial mat interactions along a hydroperiod gradient (3–8 months) using a structural equation model. In the experiment, the effect of hydrology on the interaction between macrophytes and microbial mats was quantified by measuring the effect of bimonthly removal of macrophyte or microbial mat biomass on the biomass of both communities in plots in wetlands with contrasting hydroperiods (3–6 months). Hydrology and biological interactions influenced macrophyte and microbial mat biomass, with stronger interactions observed in the shortest hydroperiod transect sites dominated bySchoenus nigricansandCladium jamaicense. Along the hydrologic gradient, we found direct negative effects of macrophyte biomass on microbial biomass and vice versa, and a significant positive effect of microbial response to flooding duration on macrophyte biomass. Experimental macrophyte removal in shorter‐hydroperiod wetlands resulted in a significant increase in microbial biomass while microbial mat removal reduced biomass of the dominant macrophyteC. jamaicense. The facilitative effect of microbial mats on macrophyte biomass in shorter‐hydroperiod wetlands may be driven by mats prolonging soil moisture retention due to their desiccation‐resistant structure. Stress‐induced facilitation supported the stress gradient hypothesis across the short‐hydrologic gradient, while competitive interactions were also observed. As climate and human drivers continue altering hydrology in aquatic systems, the type and strength of community interactions will continue to shift and alter distributions across the landscape. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  3. Abstract Aim and QuestionsSea‐level rise has been responsible for extensive vegetation changes in coastal areas worldwide. The intent of our study was to analyze vegetation dynamics of a South Florida coastal watershed within an explicit spatiotemporal framework that might aid in projecting the landscape's future response to restoration efforts. We also asked whether recent transgression by mangroves and other halophytes has resulted in reduced plant diversity at local or subregional scales. LocationFlorida’'s Southeast Saline Everglades, USA. MethodsWe selected 26 locations, representing a transition zone between sawgrass marsh and mangrove swamp, that was last sampled floristically in 1995. Within this transition zone, leading‐ and trailing‐edge subzones were defined based on plant composition in 1995. Fifty‐two site × time combinations were classified and then ordinated to examine vegetation–environment relationships using 2016 environmental data. We calculated alpha‐diversity using Hill numbers or Shannon–Weiner index species equivalents and compared these across the two surveys. We used a multiplicative diversity partition to determine beta‐diversity from landscape‐scale (gamma) diversity in the entire dataset or in each subzone. ResultsMangrove and mangrove associates became more important in both subzones: through colonization and establishment in the leading edge, and through population growth combined with the decline of freshwater species in the trailing edge. Alpha‐diversity increased significantly in the leading edge and decreased nominally in the trailing edge, while beta‐diversity declined slightly in both subzones as well as across the study area. ConclusionsRecent halophyte encroachment in the Southeast Saline Everglades continues a trend evident for almost a century. While salinity is an important environmental driver, species’ responses suggest that restoration efforts based on supplementing freshwater delivery will not reverse a trend that depends on multiple interacting factors. Sea‐level‐rise‐driven taxonomic homogenization in coastal wetland communities develops slowly, lagging niche‐based changes in community structure and composition. 
    more » « less
  4. null (Ed.)
    Naturally formed forest patches known as tree islands are found within lower-statured wetland matrices throughout the world, where they contrast sharply with the surrounding vegetation. In some coastal wetlands they are embedded in former freshwater marshes that are currently exposed to saltwater intrusion and mangrove encroachment associated with accelerating sea-level rise. In this study we resurveyed tree composition and determined environmental conditions in tree islands of the coastal Florida Everglades that had been examined two decades earlier. We asked whether tree islands in this coastal transition zone were differentiated geomorphologically as well as compositionally, and whether favorable geomorphology enabled coastal forest type(s) to maintain their compositional integrity against rising seas. Patterns of variation in geomorphology and soils among forest types were evident, but were dwarfed by differences between forest and adjacent wetlands. Tree island surfaces were elevated by 12–44 cm, and 210Pb analyses indicated that their current rates of vertical accretion were more rapid than those of surrounding ecosystems. Tree island soils were deeper and more phosphorus-rich than in the adjoining matrix. Salinity decreased interiorward in both tree island and marsh, but porewater was fresher in forest than marsh in Mixed Swamp Forest, midway along the coastal gradient where tropical hardwoods were most abundant. Little decrease in the abundance of tropical hardwood species nor increase in halophytes was observed during the study period. Our data suggest that geomorphological differences between organic tree island and marl marsh, perhaps driven by groundwater upwelling through more transmissive tree island soils, contributed to the forests’ compositional stability, though this stasis may be short-lived despite management efforts. 
    more » « less
  5. null (Ed.)
    Fungi play prominent roles in ecosystem services (e.g., nutrient cycling, decomposition) and thus have increasingly garnered attention in restoration ecology. However, it is unclear how most management decisions impact fungal communities, making it difficult to protect fungal diversity and utilize fungi to improve restoration success. To understand the effects of restoration decisions and environmental variation on fungal communities, we sequenced soil fungal microbiomes from 96 sites across eight experimental Everglades tree islands approximately 15 years after restoration occurred. We found that early restoration decisions can have enduring consequences for fungal communities. Factors experimentally manipulated in 2003–2007 (e.g., type of island core) had significant legacy effects on fungal community composition. Our results also emphasized the role of water regime in fungal diversity, composition, and function. As the relative water level decreased, so did fungal diversity, with an approximately 25% decline in the driest sites. Further, as the water level decreased, the abundance of the plant pathogen–saprotroph guild increased, suggesting that low water may increase plant-pathogen interactions. Our results indicate that early restoration decisions can have long-term consequences for fungal community composition and function and suggest that a drier future in the Everglades could reduce fungal diversity on imperiled tree islands. 
    more » « less